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FUZZY INFORMATION AGGREGATION IN INSURANCE 
 

 

Abstract. The uncertainty faced by insurance companies may include 
various aspects, such as the possibility of partial withdrawal in a life insurance 

which leads to a liquidity risk, or health care benefits claims. Acting in a 

competitive market is another source of uncertainty as the insurer characteristics 
may be essential in being preferred by a possible client. Thus, in real-life, there are 

many situations in which the information cannot be assessed precisely in 

numerical values. Fuzzy phenomena exist in nature and are encountered within 

human society. The notion of a fuzzy set has been introduced by L. A. Zadeh in 
1965 and has been since developed in many directions. As well, researchers and 

practitioners have identified applications in many fields. In this paper, we assume 

that the characteristics of the insurance products with respect to the attribute are 
represented by intuitionistic fuzzy numbers. The purpose of this paper is to develop 

an aggregation procedure based on a weighted intuitionistic fuzzy Bonferroni 

mean and an aggregation procedure introduced by Xu and Yager in 2011, for the 
multi-attribute decision making and selection of the insurance product. 

            Key words:fuzzy number,fuzzy set, intuitionistic fuzzy set, intuitionistic 

fuzzy Bonferroni mean, generalized fuzzy aggregation operator. 
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1. Introduction 
 

Fuzzy phenomena exist in nature and are encountered within human society. In 

real-life, there are many situations in which the information cannot be assessed 
precisely in numerical values. 

Fuzzy sets and fuzzy logic are used for modeling imprecise modes of 

reasoning that play an essential role in the remarkable human ability to make 

rational decisions in an environment of uncertainty and imprecision. In the real 
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world applications, membership functions are usually formed based on by the 

user’s intuition. The notion of a fuzzy set has been introduced by L. A. Zadeh in 

1965 in order to formalize concepts, in connection with the representation of 
human natural language and computing with words. A fuzzy set can be defined 

mathematically by assigning to each possible individual in the universe of 

discourse a value representing its grade of membership in the fuzzy set. Atanassov 
(1986) introduced the concept of intuitionistic fuzzy set as a generalization of 

fuzzy set. He added in the definition of the fuzzy set a new component which 

determines the degree of non-membership. 
The Universal Life policy is a complex product for the insurer. The flexibility 

granted to the policyholder involves many risks. Thus, it is difficult to predict 

future profits, due to the uncertainty on the premium level. The possibility of 

partial withdrawal determines a liquidity risk, therefore it is difficult to match the 
liabilities with appropriate assets, and so on. The product can be very attractive. 

The insurer can try to gain the loyalty of the policyholder by means of designing an 

insurance package which provides capital protection and other insurance benefits 
during the working life of the insured, and then pension benefits after retirement. 

Health insurance benefits can also be included in policy: accident insurance, 

disability benefits, hospitalization benefits, and so on. 
Recently, some researchers have proposed many aggregation operators for 

multiple attribute decision making problems. Torra (2010) introduced the concept 

of hesitant fuzzy set, which is a generalization of the concept of fuzzy set. He 

studied the relationship with intuitionistic fuzzy set, and proved that the envelope 
of the hesitant fuzzy sets is an intuitionistic fuzzy set. Xia and Xu (2011) 

developed some operators for aggregating hesitant fuzzy information, such as 

hesitant fuzzy weighted averaging operator, hesitant fuzzy weighted geometric 
operator, generalized hesitant fuzzy weighted averaging operator, etc. Xu and 

Yager (2011) developed some operators for aggregating intuitionistic fuzzy 

information, such as weighted intuitionistic fuzzy Bonferroni mean operator. Chen 

et al. (2013) introduced a new type of fuzzy preference structure, called interval-
valued hesitant preference relation, and they gave systematic aggregation operators 

to aggregate interval-valued hesitant fuzzy information. Miheț and Zaharia (2014) 

gave a generalization of the notion of fuzzy normed space. Gong and Hai (2016) 
derived some further properties of convex and quasi-convex fuzzy number-valued 

function, which are useful for fuzzy optimization. 

In this paper, we develop an approach based on the proposed aggregation 
operators to multiple attribute decision making. Finally, an illustrative example is 

given to show the developed method. In order to this, the remainder of the paper is 

structured as follows. Section 2 introduces the basic concepts of fuzzy set, fuzzy 

number, intuitionistic fuzzy set, intuitionistic fuzzy number, and some operational 
laws of intuitionistic fuzzy numbers (IFNs). Section 3 presents some aggregate 

operators with intuitionistic fuzzy information. The novel method for decision 

making with intuitionistic fuzzy information based on the given operators is 
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introduced in the last part of this section. Section 4 presents a numerical example, 

and the last section includes some concluding remarks. 
 

2. Basic concepts 
 

A crisp set is a regular set and a crisp number is a real number. In fuzzy logic it 

is allowed for truth values to be any number in the interval [0, 1]. 
 

Definition 1. (Zadeh, 1965) Let X be a fixed set. Then 𝐹 = {〈𝑥, 𝜇𝐹(𝑥)〉|𝑥 ∈ 𝑋}is 

called a fuzzy set, where 𝜇𝐹: 𝑋 → [0,1] is the membership function of F, and 

𝜇𝐹(𝑥) indicates the membership degree of the element x to F. 

 

In order to determine the algebra of fuzzy subsets of X, we have to specify the 

intersection and union. Let A and B be two fuzzy sets. Then the intersection is𝐶 =
𝐴 ∩ 𝐵, where the value of 𝜇𝐶(𝑥) will be a function of the two values 𝜇𝐴(𝑥)and 

𝜇𝐵(𝑥). This unknown function will be 𝑖(𝑎, 𝑏), with 𝑎, 𝑏 ∈ [0, 1]. Thus, 𝜇𝐶(𝑥) =

𝑖(𝜇𝐴(𝑥), 𝜇𝐵(𝑥)), for all x in X, defines the membership function of C. Possible 

choices for 𝑖(𝑎, 𝑏) could be𝑖(𝑎, 𝑏) = 𝑎𝑏, 𝑖(𝑎, 𝑏) = min(𝑎, 𝑏), 

𝑖(𝑎, 𝑏) = √max(0, 𝑎2 + 𝑏2 − 1). 
The functions used for intersection of fuzzy sets are called t-norms. 

Let R be the set of all real numbers and 𝐑+ the set of all positive real numbers. 
 

Definition 2. A t-norm T is a function 𝑦 = 𝑇(𝑎, 𝑏), where 𝑎, 𝑏, 𝑦 ∈ [0, 1], having 

the following properties: 

i) 𝑇(𝑎, 1) = 𝑎; 

ii) 𝑇(𝑎, 𝑏) = 𝑇(𝑏, 𝑎); 
iii) if 𝑏 ≤ 𝑐, then 𝑇(𝑎, 𝑏) ≤ 𝑇(𝑎, 𝑐); 

iv) 𝑇(𝑎, 𝑇(𝑏, 𝑐)) = 𝑇(𝑇(𝑎, 𝑏), 𝑐). 
 

The basic t-norms are𝑇𝑚(𝑎, 𝑏) = min(𝑎, 𝑏), 𝑇𝑏(𝑎, 𝑏) = max(0, 𝑎 + 𝑏 − 1), 

𝑇𝑝(𝑎, 𝑏) = 𝑎𝑏, 𝑇∗(𝑎, 𝑏) = {
𝑎,     if 𝑏 = 1
𝑏,     if 𝑎 = 1
0,  otherwise

. 

𝑇𝑚is called standard intersection, 𝑇𝑏 is bounded sum, 𝑇𝑝 is algebraic product, 

and 𝑇∗ is drastic intersection. 

 

Remark 1. 

i) 𝑇∗(𝑎, 𝑏) ≤ 𝑇𝑏(𝑎, 𝑏) ≤ 𝑇𝑝(𝑎, 𝑏) ≤ 𝑇𝑚(𝑎, 𝑏), for all a, bin [0,1]. 

ii) If T is any t-norm, then 𝑇∗(𝑎, 𝑏) ≤ 𝑇(𝑎, 𝑏) ≤ 𝑇𝑚(𝑎, 𝑏). 
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Let A and B be two fuzzy sets. Then the union is 𝐷 = 𝐴 ∪ 𝐵, where the value 

of 𝜇𝐷(𝑥) will be a function of the two values 𝜇𝐴(𝑥) and 𝜇𝐵(𝑥). Let this function 

be 𝑢(𝑎, 𝑏), with 𝑎, 𝑏 ∈ [0, 1]. Thus, 𝜇𝐷(𝑥) = 𝑢(𝜇𝐴(𝑥) , 𝜇𝐵(𝑥)), for all x in X, 

defines the membership function of D. Choices for 𝑢(𝑎, 𝑏) could be 𝑢(𝑎, 𝑏) = 𝑎 +

𝑏 − 𝑎𝑏, 𝑢(𝑎, 𝑏) = max(𝑎, 𝑏), and 𝑢(𝑎, 𝑏) = min(1, √𝑎2 + 𝑏2). 
The functions used for union are called t-conorms. 

 

Definition 3. A t-conormU is a function 𝑧 = 𝑈(𝑎, 𝑏), where 𝑎, 𝑏, 𝑧 ∈ [0, 1], having 

the following properties: 

i) 𝑈(𝑎, 0) = 𝑎; 

ii) 𝑈(𝑎, 𝑏) = 𝑈(𝑏, 𝑎); 
iii) if 𝑏 ≤ 𝑐, then 𝑈(𝑎, 𝑏) ≤ 𝑈(𝑎, 𝑐); 

iv) 𝑈(𝑎, 𝑈(𝑏, 𝑐)) = 𝑈(𝑈(𝑎, 𝑏), 𝑐). 
The basic t-conorms are𝑈𝑚(𝑎, 𝑏) = max(𝑎, 𝑏), 𝑈𝑏(𝑎, 𝑏) = min(1, 𝑎 + 𝑏), 

𝑈𝑝(𝑎, 𝑏) = 𝑎 + 𝑏 − 𝑎𝑏, 𝑈∗(𝑎, 𝑏) = {
𝑎,     if 𝑏 = 0
𝑏,     if 𝑎 = 0
 1,  otherwise

. 

𝑈𝑚is called standard union, 𝑈𝑏 is bounded sum, 𝑈𝑝 is algebraic sum and 𝑈∗ is 

drastic union. 

 

Remark 2. 

i) 𝑈𝑚(𝑎, 𝑏) ≤ 𝑈𝑝(𝑎, 𝑏) ≤ 𝑈𝑏(𝑎, 𝑏) ≤ 𝑈
∗(𝑎, 𝑏), for all a, bin [0,1]. 

ii) If U is any t-conorm, then 𝑈𝑚(𝑎, 𝑏) ≤ 𝑈(𝑎, 𝑏) ≤ 𝑈
∗(𝑎, 𝑏). 

 

One of the general union function is Yager’s union function defined as: 

𝑈𝑤(𝑎, 𝑏) = min [1, (𝑎𝑤 + 𝑏𝑤)
1

𝑤], where 𝑤 ∈ (0,∞). For instance, 𝑤 = 1 leads to 

𝑈1(𝑎, 𝑏) = min(1, 𝑎 + 𝑏), that is, the bounded sum. For 𝑎, 𝑏 ∈ (0,1), 𝑎 < 𝑏, note 

that 𝑥(𝑤) = (𝑎𝑤 + 𝑏𝑤)
1

𝑤. 
We obtain 

lim
𝑤→∞

ln 𝑥(𝑤) = lim
𝑤→∞

𝑎𝑤 ln 𝑎 + 𝑏𝑤 ln 𝑏

𝑎𝑤 + 𝑏𝑤
 

= lim
𝑤→∞

(𝑎 𝑏⁄ )𝑤 ln 𝑎 + ln 𝑏

(𝑎 𝑏⁄ )𝑤 + 1
 

= ln𝑏, 

thus lim
𝑤→∞

𝑥(𝑏) = 𝑏 = 𝑚𝑎𝑥(𝑎, 𝑏). Similarly, it can be proven for the another case. 

Therefore lim
𝑤→∞

𝑈𝑤(𝑎, 𝑏) = 𝑚𝑎𝑥(𝑎, 𝑏). 

 

Proposition 1.Assuming that𝑤 → ∞, Yager union function is transformed into the 
standard union function. 
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In practice one usually uses a pair of T and U which are dual. T and U are dual 

when 𝑇(𝑎, 𝑏) = 1 − 𝑈(1 − 𝑎, 1 − 𝑏), 𝑈(𝑎, 𝑏) = 1 − 𝑇(1 − 𝑎, 1 − 𝑏). Using the 

associativity property of T and U, we define 𝑇(𝑎1, 𝑎2, … , 𝑎𝑛)and 𝑈(𝑎1, 𝑎2, … , 𝑎𝑛), 
for 𝑎𝑖 ∈ [0,1], 1 ≤ 𝑖 ≤ 𝑛, as 

𝑇𝑚(𝑎1, 𝑎2, … , 𝑎𝑛) = min(𝑎1, 𝑎2, … , 𝑎𝑛), 
𝑈𝑚(𝑎1, 𝑎2,… , 𝑎𝑛) = max(𝑎1, 𝑎2,… , 𝑎𝑛), 
𝑇𝑏(𝑎1, 𝑎2, … , 𝑎𝑛) = max(0, ∑ 𝑎𝑖

𝑛
𝑖=1  − 𝑛 + 1), 

𝑈𝑏(𝑎1, 𝑎2, … , 𝑎𝑛) = min(1, ∑ 𝑎𝑖
𝑛
𝑖=1 ), 

𝑇𝑝(𝑎1, 𝑎2,… , 𝑎𝑛) = 𝑎1𝑎2⋯𝑎𝑛, 

𝑈𝑝(𝑎1, 𝑎2, … , 𝑎𝑛) =∑𝑎𝑖

𝑛

𝑖=1

− ∑ 𝑎𝑖𝑎𝑗
1≤𝑖<𝑗≤𝑛

 

+∑ 𝑎𝑖𝑎𝑗𝑎𝑘𝑎≤𝑖<𝑗<𝑘≤𝑛 +. . . +(−1)𝑛−1𝑎1𝑎2⋯𝑎𝑛. 

Considering Yager union function, we have 

𝑇𝑤(𝑎, 𝑏) = 1 −min [1, ((1 − 𝑎)𝑤 + (1 − 𝑏)𝑤)
1

𝑤] 

andlim𝑤→∞𝑇𝑤(𝑎, 𝑏) = min(𝑎, 𝑏). 
 

Proposition 2.If 𝑤 → ∞, then the function 𝑇𝑤 converges to the standard 

intersection function. 

 

The concepts of 𝜑-normed space and fuzzy 𝜑-normed space were introduced 

as generalizations of those of normed space and fuzzy normed space, by 

considering an appropriate function 𝜑 in the homogeneity axiom. 𝜑:R → Ris a 

function with the properties: 

i) 𝜑(−𝑡) = 𝜑(𝑡) for every 𝑡 ∈ R, 

ii) 𝜑(1) = 1, 

iii) 𝜑is strictly increasing and continuous on [0,∞), 𝜑(0) = 0 and 

lim
𝑡→∞

𝜑(𝑡) = ∞. 

 

Definition 4. (Atanassov, 1986) An intuitionistic fuzzy set (IFS) is an object  

𝐴 = {〈𝑥, 𝜇𝐴(𝑥), 𝜈𝐴(𝑥)〉|𝑥 ∈ 𝑋} 
which is characterized by a membership function 𝜇𝐴: 𝑋 → [0,1], and a non-

membership function 𝜈𝐴: 𝑋 → [0,1] with the condition: 0 ≤ 𝜇𝐴(𝑥) + 𝜈𝐴(𝑥) ≤ 1, 

for all 𝑥 ∈ 𝑋, where 𝜇𝐴(𝑥) is the membership degree of x in A, and 𝜈𝐴(𝑥) represent 
the non-membership degree of x in A. 

 

For each IFS A in X, if 

𝜋𝐴(𝑥) = 1 − 𝜇𝐴(𝑥) − 𝜈𝐴(𝑥), for all 𝑥 ∈ 𝑋, 
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then𝜋𝐴(𝑥) is called an indeterminancy degree (hesitancy degree or intuitionistic 

index) of x in A. In particular, if 𝜋𝐴(𝑥) = 0, for all 𝑥 ∈ 𝑋, then A reduces to 

Zadeh’s fuzzy set. 

For convenience, 𝛼 = (𝜇𝛼 , 𝜈𝛼) is an intuitionistic fuzzy number (IFN) or an 

intuitionistic fuzzy value (IFV), where 𝜇𝛼 ∈ [0,1], 𝜈𝛼 ∈ [0,1], 𝜇𝛼+𝜈𝛼 ≤ 1. Let us 

consider 𝛩 be the set of all IFNs. For any IFN 𝛼 = (𝜇𝛼 , 𝜈𝛼), the score of 𝛼 can be 

evaluated by the score function s defined as 𝑠(𝛼) = 𝜇𝛼 − 𝜈𝛼, where 𝑠(𝛼) ∈
[−1,1]. The larger the score 𝑠(𝛼), then the larger the IFN 𝛼. Clearly, 𝛼+ = (1,0) is 

the largest IFN, and 𝛼− = (0,1) is the smallest IFN. It is defined an accuracy 

function h: ℎ(𝛼) = 𝜇𝛼 + 𝜈𝛼, where ℎ(𝛼) is the accuracy degree of the IFN 𝛼 =
(𝜇𝛼 , 𝜈𝛼). 
 

3. Aggregate operators with fuzzy information 
 

A method for comparison and ranking of two IFNs is based on the score 

function s and the accuracy function h. 

 

Definition 5. Let 𝛼1 = (𝜇𝛼1 , 𝜈𝛼1) and 𝛼2 = (𝜇𝛼2 , 𝜈𝛼2) be two IFNs, the score 

function s and the accuracy function h. Then: 

 If 𝑠(𝛼1) < 𝑠(𝛼2), then the IFN 𝛼1 is smaller than the IFN 𝛼2, denoted 𝛼1 < 𝛼2. 

 If 𝑠(𝛼1) = 𝑠(𝛼2), then 

1) If ℎ(𝛼1) = ℎ(𝛼2), the IFNs 𝛼1 and 𝛼2 are equal, denoted𝛼1 = 𝛼2; 
2) If ℎ(𝛼1) < ℎ(𝛼2), the IFN 𝛼1 is smaller than the IFN 𝛼2, denoted 𝛼1 < 𝛼2; 

3) If ℎ(𝛼1) > ℎ(𝛼2), the IFN 𝛼1 is larger than the IFN 𝛼2, denoted 𝛼1 > 𝛼2. 

 If 𝑠(𝛼1) > 𝑠(𝛼2), then the IFN 𝛼1 is larger than the IFN 𝛼2, denoted 𝛼1 > 𝛼2. 

 
An interesting research topic is “how to aggregate a collection of IFNs without 

any loss of information”. 

 

Definition 6.Let 𝑎𝑗 , 𝑗 = 1,2, … , 𝑛, be a collection of real numbers, 𝜔 =
(𝜔1, 𝜔2 , … , 𝜔𝑛) is the weight vector of 𝑎𝑗 numbers, with 𝜔𝑗 ∈ [0,1], 𝑗 = 1,2, … , 𝑛, 

and ∑ 𝜔𝑗
𝑛
𝑗=1 = 1, and 𝑊𝐴:𝐑𝑛 ⟶𝐑. If 𝑊𝐴𝜔(𝑎1, 𝑎2, … , 𝑎𝑛) = ∑ 𝜔𝑗 ∙ 𝑎𝑗

𝑛
𝑗=1 , then 

the function WA is called a weighted averaging operator. 
 

Definition 7. Let 𝑊𝐺𝜔: (𝐑
+)𝑛 ⟶𝐑+. If 𝑊𝐺𝜔(𝑎1, 𝑎2, … , 𝑎𝑛) = ∏ 𝑎

𝑗

𝜔𝑗𝑛
𝑗=1 , then 

the function WG is called a weighted geometric operator, where 𝜔 =
(𝜔1, 𝜔2 , … , 𝜔𝑛) is the exponential weighting vector of 𝑎𝑗 numbers, with 𝜔𝑗 ∈

[0,1], 𝑗 = 1,2, … , 𝑛, and ∑ 𝜔𝑗
𝑛
𝑗=1 = 1. 

 

The difference between these two operators is that the WG operator is much 
more sensitive to the given arguments. Especially in the case where there is an 
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argument taking the value of zero, the aggregated value of these arguments by 

using the WG operator must be zero no matter what the other given arguments are. 
 

Definition 8. Let 𝑂𝑊𝐴:𝐑𝑛 ⟶𝐑. If 𝑂𝑊𝐴𝜔(𝑎1, 𝑎2, … , 𝑎𝑛) = ∑ 𝜔𝑗 ∙ 𝑏𝑗
𝑛
𝑗=1 , where 

𝜔 = (𝜔1, 𝜔2 , … , 𝜔𝑛) is the weighting vector associated with the function OWA, 

with 𝜔𝑗 ∈ [0,1], 𝑗 = 1,2, … , 𝑛, and ∑ 𝜔𝑗
𝑛
𝑗=1 = 1, and 𝑏𝑗 is the j-th largest of 𝑎𝑗, 𝑗 =

1,2,⋯ , 𝑛, then the function OWA is called an ordered weighted averaging operator. 
 

Definition 9.Let 𝑂𝑊𝐺: (𝐑+)𝑛 ⟶ 𝐑+. If 𝑂𝑊𝐺𝑤(𝑎1, 𝑎2, … , 𝑎𝑛) = ∏ 𝑏
𝑗

𝑤𝑗𝑛
𝑗=1 , 

where 𝑤 = (𝑤1 , 𝑤2, … , 𝑤𝑛) is the exponential weighting vector associated with the 

function OWG, with 𝜔𝑗 ∈ [0,1], 𝑗 = 1,2, … , 𝑛, ∑ 𝜔𝑗
𝑛
𝑗=1 = 1, and 𝑏𝑗 is the j-th 

largest of 𝑎𝑗, 𝑗 = 1,2, … , 𝑛, then the function OWG is called an ordered weighted 

geometric operator. 
 

Definition 10.Let𝛼𝑖 = (𝜇𝛼𝑖 , 𝜈𝛼𝑖), 𝑖 = 1,2,⋯ , 𝑛, a collection of intuitionistic fuzzy 

numbers, and 𝜔 = (𝜔1 , 𝜔2, … , 𝜔𝑛) the weight vector of 𝛼𝑖 , 𝑖 = 1,2, … , 𝑛, with 

𝜔𝑖 ∈ [0,1], 𝑖 = 1,2, … , 𝑛, and ∑ 𝜔𝑖
𝑛
𝑖=1 = 1, then 𝐼𝐹𝑊𝐴𝜔(𝛼1, 𝛼2, … , 𝛼𝑛) =

𝜔1𝛼1⊕𝜔2𝛼2⊕⋯⊕𝜔𝑛𝛼𝑛 is called an intuitionistic fuzzy weighted averaging 

operator. 
 

Definition 11. Let 𝑝, 𝑞 ≥ 0, 𝑝 + 𝑞 > 0, and 𝛼𝑖 ≥ 0, 𝑖 = 1,2,⋯ , 𝑛, a collection of 

non-negative real numbers, then 𝐵𝑝,𝑞(𝛼1, 𝛼2, … , 𝛼𝑛) = (
1

𝑛∙(𝑛−1)
∑ 𝛼𝑖

𝑝 ∙ 𝛼𝑗
𝑞𝑛

𝑖,𝑗=1
𝑖≠𝑗

)

1

𝑝+𝑞

 

is called the Bonferroni mean (BM). 

 

Definition 12. Let 𝑝, 𝑞 ≥ 0, 𝑝 + 𝑞 > 0, and 𝛼𝑖 , 𝑖 = 1,2, … , 𝑛, a collection of 

intuitionistic fuzzy numbers, and 𝜔 = (𝜔1, 𝜔2 , … , 𝜔𝑛) the weight vector of 𝛼𝑖 , 𝑖 =
1,2, … , 𝑛, where 𝜔𝑖 indicates the importance degree of 𝛼𝑖, satisfying 𝜔𝑖 ∈
[0,1], 𝑖 = 1,2, … , 𝑛, and ∑ 𝜔𝑖

𝑛
𝑖=1 = 1, then 

𝐼𝐹𝐵𝜔
𝑝,𝑞(𝛼1, 𝛼2, ⋯ , 𝛼𝑛) =

(

  
 

1

𝑛∙(𝑛−1)

(

 
 

𝑛
⊕

𝑖, 𝑗 = 1
𝑖 ≠ 𝑗

((𝜔𝑖𝛼𝑖)
𝑝⊗ (𝜔𝑗𝛼𝑗)

𝑞
)

)

 
 

)

  
 

1

𝑝+𝑞

is called 

the weighted intuitionistic fuzzy Bonferroni mean (WIFBM). 

 

Theorem 1. (Xu and Yager, 2011) The aggregated value using the WIFBM is an 

IFN, and 
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𝑊𝐼𝐹𝐵𝜔
𝑝,𝑞(𝛼1, 𝛼2,⋯ , 𝛼𝑛) = 

=

(

 
 

(

 
 
1−∏ (1− (1 − (1 − 𝜇𝛼𝑖)

𝜔𝑖
)
𝑝
(1 − (1 − 𝜇𝛼𝑗)

𝜔𝑗
)
𝑞

)
𝑚𝑛

𝑖,𝑗=1
𝑖≠𝑗 )

 
 

𝑡

, 

                                 1 − (1 −∏ (1 − (1 − 𝜈𝛼𝑖
𝜔𝑖)

𝑝
(1 − 𝜈𝛼𝑗

𝜔𝑗)
𝑞
)
𝑚

𝑛
𝑖,𝑗=1
𝑖≠𝑗

)

𝑡

), 

where 𝑚 =
1

𝑛∙(𝑛−1)
, 𝑡 =

1

𝑝+𝑞
. 

 

 

Proposition 3. If 𝛼 = (𝜇𝛼 , 𝜈𝛼), 𝛼1 = (𝜇𝛼1 , 𝜈𝛼1), and 𝛼2 = (𝜇𝛼2 , 𝜈𝛼2) are IFNs, 

then 

1) �̅� = (𝜈𝛼 , 𝜇𝛼); 

2) 𝛼1⋀𝛼2 = (𝑚𝑖𝑛{𝜇𝛼1 , 𝜇𝛼2},𝑚𝑎𝑥{𝜈𝛼1 , 𝜈𝛼2}); 

3) 𝛼1⋁𝛼2 = (𝑚𝑎𝑥{𝜇𝛼1 , 𝜇𝛼2},𝑚𝑖𝑛{𝜈𝛼1 , 𝜈𝛼2}); 

4) 𝛼1⊕𝛼2 = (𝜇𝛼1 + 𝜇𝛼2 − 𝜇𝛼1 ∙ 𝜇𝛼2 , 𝜈𝛼1 ∙ 𝜈𝛼2); 

5) 𝛼1⊗𝛼2 = (𝜇𝛼1 ∙ 𝜇𝛼2 , 𝜈𝛼1 + 𝜈𝛼2 − 𝜈𝛼1 ∙ 𝜈𝛼2); 

6) 𝜆𝛼 = (1 − (1 − 𝜇𝛼)
𝜆, 𝜈𝛼

𝜆), 𝜆 > 0; 

7) 𝛼𝜆 = (𝜇𝛼
𝜆 , 1 − (1 − 𝜈𝛼)

𝜆), 𝜆 > 0, 
are IFNs. 

 

For a multi-attribute decision making problem, let 𝑌 = {𝑌1, 𝑌2, … , 𝑌𝑛} be a 

finite set of alternatives, 𝐺 = {𝐺1, 𝐺2, … , 𝐺𝑚} a set of attributes, and 𝜔 =
(𝜔1, 𝜔2 , … , 𝜔𝑚) the weight vector of attributes, where 𝜔𝑗 ∈ [0,1], 𝑗 = 1,2, … ,𝑚, 

and ∑ 𝜔𝑗
𝑚
𝑗=1 = 1. Suppose that the characteristics of the alternatives 𝑌𝑖 , 𝑖 =

1,2, … , 𝑛, are represented by the IFNs. For convenience, let 𝜌𝑖𝑗 = (𝑡𝑖𝑗, 𝑓𝑖𝑗) denote 

the characteristic of the alternative 𝑌𝑖 with respect to the attribute 𝐺𝑗, where 𝑡𝑖𝑗  

indicates the degree that the alternative 𝑌𝑖 satisfies the attribute 𝐺𝑗, and 𝑓𝑖𝑗 indicates 

the degree that the alternative 𝑌𝑖 does not satisfy the attribute 𝐺𝑗. Therefore, the 

characteristics can be contained in an intuitionistic fuzzy decision matrix 𝜌 =
(𝜌𝑖𝑗)𝑛×𝑚, where 𝑡𝑖𝑗 ∈ [0,1],𝑓𝑖𝑗 ∈ [0,1], and 𝑡𝑖𝑗 + 𝑓𝑖𝑗 ≤ 1. If all the attributes 

𝐺𝑗, 𝑗 = 1,2, … ,𝑚, are of the same type, then the attribute values do not need 

normalization. However, there are generally benefit attributes and cost attributes in 

multi-attribute decision making. In such cases, we transform the attribute values of 

cost type into the attribute values of benefit type, then the matrix 𝜌 = (𝜌𝑖𝑗)𝑛×𝑚 
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can be transformed into the intuitionistic fuzzy decision matrix 𝑅 = (𝑟𝑖𝑗)𝑛×𝑚, 

where 

𝑟𝑖𝑗 = (𝜇𝑖𝑗, 𝜈𝑖𝑗) = {
𝜌𝑖𝑗,  for benefit attribute 𝐺𝑗,

�̅�𝑖𝑗,      for cost attribute 𝐺𝑗
, 

where �̅�𝑖𝑗 is the complement of 𝜌𝑖𝑗, and therefore �̅�𝑖𝑗 = (𝑓𝑖𝑗, 𝑡𝑖𝑗). 

 
The proposed approach to multi-attribute decision making with intuitionistic 

fuzzy information involves the following steps: 

Step 1: Let Y, G, 𝜔 and matrix 𝜌 be defined as before. If it is necessary, we can 

transform 𝜌 into the normalized intuitionistic fuzzy decision matrix R. 

Step 2: Utilize the WIFBM and IFWA operators to aggregate all the characteristics 

of the i-th line, and calculate the overall attribute values 𝑟𝑏𝑖,𝑟𝑎𝑖 corresponding to 

the alternative 𝑌𝑖, 𝑖 = 1,2, … , 𝑛. 

Step 3: Based on Definition 5, rank all the alternatives 𝑌𝑖, 𝑖 = 1,2, … , 𝑛, in 

accordance with values 𝑟𝑏𝑖, and respectively 𝑟𝑎𝑖, 𝑖 = 1,2, … , 𝑛. Calculate, as well, 

the average scores for the mixed method, that is, the average of the scores obtained 
using the operators WIFBM and IFWA. 

Step 4: Rank all the alternatives in ascending order, and then select the most 

desirable alternative. 

 

4. Numerical illustration and conclusions 
 

Example. We consider a complex insurance product offered by four insurers, 

𝑌𝑖 , 𝑖 = 1, 2, 3, 4. Suppose that there are three attributes: G1: the(economic) cost, 

G2: insurance coverage degree, G3: credibility of insurer. The weight vector 𝜔 of 

the attributes is 𝜔 = (0.3; 0.3; 0.4). The characteristics of the alternatives 𝑌𝑖 are 

represented by the IFNs, as shown in Table 1. 

 

Table 1. The IFNs attributes G1, G2, G3 for the insurers𝒀𝒊, 𝒊 = 𝟏, 𝟐, 𝟑, 𝟒. 

 𝐺1 𝐺2 𝐺3 

Y1 (0.3; 0.6) (0.4; 0.5) (0.7; 0.2) 

Y2 (0.3; 0.5) (0.7; 0.2) (0.4; 0.3) 

Y3 (0.5; 0.4) (0.6; 0.4) (0.5; 0.3) 

Y4 (0.3; 0.7) (0.5; 0.4) (0.3; 0.6) 

 

We calculated the weighted intuitionistic fuzzy Bonferroni means, they are 

given below: 

𝑊𝐼𝐹𝐵𝑀𝜔
1,1(𝑌1) = (0.245784; 0.687961), 

𝑊𝐼𝐹𝐵𝑀𝜔
1,1(𝑌2) = (0.221964; 0.344025), 
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𝑊𝐼𝐹𝐵𝑀𝜔
1,1(𝑌3) = (0.205709; 0.735848), 

𝑊𝐼𝐹𝐵𝑀𝜔
1,1(𝑌4) = (0.202034; 0.759500). 

Therefore, the ranking is𝑌4 ≺ 𝑌3 ≺ 𝑌1 ≺ 𝑌2, where “≺” denotes “be inferior to”, 

and according to the order on Bonferroni means, the best alternative is 𝑌2. 

We calculated the intuitionistic fuzzy weighted averages, they are presented 

below: 

𝐼𝐹𝑊𝐴𝜔(𝑌1) = (0.59736467; 0.29733044), 

𝐼𝐹𝑊𝐴𝜔(𝑌2) = (0.53858907; 0.26564024), 

𝐼𝐹𝑊𝐴𝜔(𝑌3) = (0.50608595; 0.38120404), 

𝐼𝐹𝑊𝐴𝜔(𝑌4) = (0.50924289; 0.43153385). 

Therefore, the ranking is𝑌4 ≺𝑎 𝑌3 ≺𝑎 𝑌2 ≺𝑎 𝑌1, where “≺𝑎” denotes “be inferior 

to”, and according to the order on weighted averaging, the best alternative is 𝑌1. 

Using the new method, called the mixt method, the third one, we have the next 

score functions: 

𝑠𝑚(𝑌1) = −0.07107123, 

𝑠𝑚(𝑌2) = 0.07544391, 

𝑠𝑚(𝑌3) = −0.20262805, 

𝑠𝑚(𝑌4) = −0.23987852. 

Therefore, the ranking is𝑌4 ≺𝑚𝑎 𝑌3 ≺𝑚𝑎 𝑌1 ≺𝑚𝑎 𝑌2, where “≺𝑚𝑎” denotes “be 

inferior to”, thus according to the order of the mixed method, the best alternative is 𝑌2. 
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Figure 1. The values of the membership and non-membership functions. 

 

Of the three rankings, two indicate the insurer𝑌2 as the best choice. We suggest 

the use of the three methods for choosing the suitable alternative, in the case of our 

example, the insurer. 

So far we considered both the membership and non-membership degree. Let us 

suppose we only take into account the membership degree, all the other 

information in the example being unchanged. Table 2 presents the fuzzy numbers 

attributes G1, G2, G3 for the insurers Y1, Y2, Y3, Y4. The last two attributes can be 

considered as benefits for the possible client, while the first one is perceived as a 

cost. 

 

Table 2. The FNs attributes G1, G2, G3 for the insurers𝒀𝒊, 𝒊 = 𝟏, 𝟐, 𝟑, 𝟒. 

 𝐺1 𝐺2 𝐺3 

Y1  0.6   0.4   0.7  

Y2  0.5   0.7   0.4  

Y3  0.4   0.6   0.5  

Y4  0.7   0.5   0.3  
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If we work with the characteristics of the alternatives 𝑌𝑖 represented by the 

fuzzy numbers (FNs), as shown in Table 2, we obtain the following results. 

The weighted fuzzy Bonferroni means are given below 

𝑊𝐹𝐵𝑀𝜔
1,1(𝑌1) = 0.24578406, 

𝑊𝐹𝐵𝑀𝜔
1,1(𝑌2) = 0.221964173, 

𝑊𝐹𝐵𝑀𝜔
1,1(𝑌3) = 0.205710007, 

𝑊𝐹𝐵𝑀𝜔
1,1(𝑌4) = 0.202034018. 

Therefore 𝑌4 ≺ 𝑌3 ≺ 𝑌2 ≺ 𝑌1, thus, according to the order on Bonferroni means, 

the best alternative is 𝑌1. 

We calculated the fuzzy weighted averages: 

𝐹𝑊𝐴𝜔(𝑌1) = 0.597364672, 

𝐹𝑊𝐴𝜔(𝑌2) = 0.538589069, 

𝐹𝑊𝐴𝜔(𝑌3) = 0.506085957, 

𝐹𝑊𝐴𝜔(𝑌4) = 0.509242897. 

Therefore 𝑌3 ≺𝑎 𝑌4 ≺𝑎 𝑌2 ≺𝑎 𝑌1, thus, according to the order on weighted average, 

the best alternative is 𝑌1. 

Using the mixt method we calculated the following score functions: 

𝑠𝑚(𝑌1) = 0.421574366, 

𝑠𝑚(𝑌2) = 0.380276621, 

𝑠𝑚(𝑌3) = 0.355897982, 

𝑠𝑚(𝑌4) = 0.355638457. 

Therefore 𝑌4 ≺𝑚𝑎 𝑌3 ≺𝑚𝑎 𝑌2 ≺𝑚𝑎 𝑌1, thus according to the order of the mixed 

method, the best alternative is 𝑌1. 

The three rankings indicate the insurer𝑌1 as the best choice. With respect to the 

first part of the example, the one in which we have considered the intuitionistic 

fuzzy numbers, the choice of another insurer in the second case could be explained 

by the smaller amount of information provided in Table 2. 

 

5. Conclusion 

The main purpose of the present paper was to develop a new fuzzy information 

aggregation procedure which is based on a weighted intuitionistic fuzzy Bonferroni 
mean and an aggregation procedure introduced by Xu and Yager in 2011. 

This new method brings new insights in solving real-life problems insurance 

companies may face while acting in a competitive market, where they want to be 
selected by clients as the best alternative. Such situations can be modeled by a 

multi-attribute decision making and selection of the insurance product or the 

insurance company. 

The illustrative example was designed to give a suggestive real-life situation of 
four competing insurance companies offering a specific insurance product. 

Possible clients have information on three attributes of those insurers: one is 
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related to the economic cost, and the other two to some benefits granted. The 

results show that, considering fuzzy numbers attributes, all procedures indicated 
the same insurer as best alternative, while considering intuitionistic fuzzy numbers 

attributes, the three procedures yielded different rankings. The additional 

information brought by the non-membership degree to the intuitionistic fuzzy 

numbers is the explanation to such a situation. Therefore, the proposed procedure 
could be another instrument in the evaluation of the possible best alternatives as it 

provides more refined alternatives for an insurance company. 

 

ACKNOWLEDGEMENT. This work has been presented at FIBA 2018 

Conference, held at The Bucharest University of Economics, on March29-30, 

2018. The authors would like to thank to all those who attended the presentation 

for the valuable suggestions and insights. They came both from the participants 

as well as from the members of the Department of Finance. In the final version 

of the paper we took into consideration those comments. 

 

REFERENCES 

 

[1] Atanassov, K. (1986), Intuitionistic Fuzzy Sets. Fuzzy Sets and Systems, 
20(1), 87-96; 

[2] Bonferroni, C. (1950), Sullemedie multiple di potenze. 

Bolletinodell’Unione MatematicaItaliana, 5(3-4), 267-270; 

[3] Carlsson, C., Fullér, R. (2003), A Fuzzy Approach to Real Option 
Valuation. Fuzzy Sets and Systems, 139(2), 297-312; 

[4] Chai, Y., Zhang, D. (2016), A Representation of Fuzzy Numbers. Fuzzy 

Sets and Systems, 295, 1-18; 

[5] Chalco-Cano, Y., Lodwick, W.A., Bede, B. (2014), Single Level 

Constraint Interval Arithmetic; Fuzzy Sets and Systems, 257, 146-168; 

[6] Chen, N., Xu, Z. S., Xia, M. (2013), Correlation Coefficients of Hesitant 
Fuzzy Sets and their Applications to Clustering Analysis. Applied 

Mathematical Modelling, 37(4), 2197-2211; 

[7] Chen, S.L., Li, J.G., Wang, X.G. (2005), Fuzzy Sets Theory and 

Applications; Science Press, Beijing; 

[8] Chiu, C. Y., Park, C. S. (1994), Fuzzy Cash Flow Analysis Using Present 

Worth Criterion. The Engineering Economist, 39(2), 113-138; 

[9] Delgado, M., Vila, A., Voxman, W. (1998), On a Canonical 
Representation of Fuzzy Numbers. Fuzzy Sets and Systems, 93(1), 125-135; 

[10] Gong, Z., Hai, S. (2016), Convexity of n-dimensional Fuzzy Number-

valued Functions and its Applications. Fuzzy Sets and Systems, 295, 19-36; 

[11] Miheț, D., Zaharia, C. (2014), A Note on the Definition of a Generalized 
Fuzzy Normed Space. Fuzzy Sets and Systems, 238, 129-134; 



 
 
 
 
 
 
Mihaela Covrig, Paul Tanasescu, Iulian Mircea 
_________________________________________________________________ 

48 

 

[12] Moon, K. S., Kim, H. (2013), A Multi-dimensional Local Average Lattice 

Method for Multi-asset Models. Quantitative Finance, 13(6), 873-884; 

[13] Torra, V. (2010), Hesitant Fuzzy Sets. International Journal of Intelligent 
Systems, 25(6), 529-539; 

[14] Torra, V. (2003), Information Fusion in Data Mining; Springer, Berlin; 

[15] Xia, M., Xu, Z. S. (2011), Hesitant Fuzzy Information Aggregation in 
Decision Making. International Journal of Approximate Reasoning, 52(3), 

395-407; 

[16] Xu, Z., Xia, M. (2011), Induced Generalized Intuitionistic Fuzzy 
Operators. Knowledge-Based Systems, 24(2), 197-209; 

[17] Xu, Z., Cai, X. (2012),  Intuitionistic Fuzzy Information Aggregation: 

Theory and Applications;  Science Press, Beijing; 

[18] Xu, Z., Yager, R.R. (2011), Intuitionistic Fuzzy Bonferroni Means. IEEE 
Transactions on Systems, Man  and Cybernetics, Part B, 41(2), 568-578; 

[19] Zadeh, L. (1965), Fuzzy Sets. Information and control, 8(3), 338-353; 

[20] Zeng, S. Z., Su, W. H. (2012), Linguistic Induced Generalized Aggregation 
Distance Operators and their Application to Decision Making.  Economic 

Computation and Economic Cybernetics Studies and Research,46(2), ASE 

Publishing,  155-172. 
 


